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Abstract—EDA vendors have proposed a standard for the and authenticate its origin. In the remainder of the paper, w
sharing of IP among vendors to be used in the design and will refer to the encrypting operation for ease of preseatat
development of IP for FPGAs. Although, we do not propose p,t it js clear that our discussion extends to the computatio

any attacks, we show that there are easy ways in which L .
they security of the whole process can be eynhanz:/ed by usingof Message Authentication Codes (MACs) and/or signatures

standard cryptographic techniques such as secret sharing ON @ particular IP block.
and public-key based key exchange. We also explore the Most of the solutions described until now implicitly assume

advantages that newer primitives have such as All-Or-Nothig  that the entire IP block programmed in the FPGA has been de-
Transforms and Physical Unclonz.iblg.Functlons. We show that veloped or owned by a single party. However, the fast time-to
the protocols proposed would significantly reduce the effds o
that the leakage of a single key would have over the whole sysh. market and smaller product cycles have m.ade extern_al silico
intellectual property (IP) providers for various orgatiaas
Index Terms— Security, IP Protection, EDA Tools, FPGAs, a very attractive option compared to internal development.
Secret Sharing Schemes, All-Or-Nothing Transforms Companies which specialize in creating IP for externalipsurt
require that their IP is not misused (their internal detafaain
confidential) since they resell the IP to multiple customers
Field Programmable Gate Arrays (FPGAs) have gain&ulch IP vendors also require contractual obligations far- pr
widespread acceptance as substitutes for ASICs in manyg based on the usage model. Notice that as a consequence
applications. In fact their re-programmability has madenth of this “IP market,” in a real FPGA development environment,
very attractive in the embedded market, where software atiik system integrators (who program the FPGA) do not own
functionality updates are common and desirable by custemehe entire IP. Thus, it is clear that there is a need for sgcuri
As a result of this shift, it is increasingly the case that thsolutions aimed at protecting the interests of the IP prenad
functionality of an embedded system is presented in the formElectronic Design Automation (EDA) tool providers have
of a bit configuration file or, in the case of microprocessirs, recognized this need. As a result, Synplicity suggestecpan o
the form of a program. Notice that the very property that nsakéP encryption standard [6] aimed at guaranteeing that the IP
FPGAs so attractive (their programmability) also makeeityv blocks developed by third parties are protected throughout
easy for counterfeiters to copy an IP developer’s configmnmat the design cycle. Notice that the standard allows for the
file and create a similar product without the up-front coshtegration of multiple IP blocks originating from differe
of Intellectual Property (IP) development. This problens hdP providers into a single design. More recently, Drimerlet a
been recognized most recently by Simpson and Schaumpxijt propose a solution to the integration of multiple IP ¢ke
[1], however, early references to the problem and suggesiada single design by modifying (albeit the modifications
solutions date back to at least the late 90’s (e.g. [2], [3Jare minor) the FPGA fabric to allow for multiple keys (as
Simpson and Schaumont [1] showed that by using a Physioglposed to a single key as is common in today’s FPGASs)
Unclonable Function (PUF) on an FPGA they could develdp be securely stored. The work of Drimer et al. builds on
protocols that allow binding of a particular IP to a partaul work by Gineysu et al. [8], who introduce the concept for
FPGA. Their protocols also allow proving authenticity o&th single blocks. Their approach makes use of keys derived from
IP to the hardware platform. Guajardo et al. [4] reduced tlsecrets and identifying information for a particular FPGA.
computation and communication complexity of the protocolBhey make use of public-key cryptography for this purpose.
in [1] and introduced the idea of Intrinsic-PUFs based ofheir methods seem appropriate for FPGAs with secure non-
the start-up values of SRAM memory values. Both workeolatile storage and enough resources to implement pidelic-
based their protocols on symmetric-key primitives. In ke crypto primitives.
authors observe that by introducing public-key cryptogsap o
the corresponding private-key does not need to ever leave fh Our Contributions
FPGA, even during the enrollment stage, thus increasing thdn this paper, we focus on strengthening the security of
security of the overall system. A common characteristic &ynplicity’s open IP flow [6]. In particular, we notice that
all PUF-based protocols in [1], [4], [5] is the derivation @f the leakage of a single key from a single EDA tool in the
key(s) from the PUF, which is used to encrypt a piece of whole chain, would have disastrous consequences. We thus

I. INTRODUCTION



try to minimize the effects that such leakage would have farrandom valuer, computesk 4 = g* mod p and sendd 4

the whole system. We emphasize that wemt propose an to userB, who in turn generates a random valecomputes
attack against the standard in [6]. From a security peragect K = ¢¥ mod p, and sendskp to A. Both A and B can
minimizing risks makes sense, specially if the system wilhen compute the session key &Sz = (Kp)* = (K4)¥ =

be used extensively and throughout the industry, as suchy®® mod p. The security of the protocol lies on the hardness
standard would. We show that we can improve the security of computing a discrete logarithm in a finite group. Notice
the system significantly using standard cryptographicwelse that we have written the protocol in terms of exponents but
as well as newer primitives which are gaining acceptanck sube same protocol can be straightforwardly implemented ove
as Physical Unclonable Functions. other structures such as elliptic curves.

B. Organization B. Physical Unclonable Functions

The remainder of this contribution is organized as fol- In 2001, Pappu et al. [10], [11] introduced the concept of
lows. Section Il provides the reader an overview of notgtioRhysical Random Functions or Physical Unclonable Funstion
background information on the Diffie-Hellman key exchangehysical Unclonable Functions consist of inherently unelo
protocol and Physical Unclonable Functions (PUFs). The aiable physical systems. When a stimulus is applied to the
is to be self contained for the reader not familiar with thessystem, it reacts with a response. Such a pair of a stimtijus
concepts. Then in Sect. lll, we describe in detail the coend a respons&; is called achallenge-responspair (CRP).
distribution problem, the protocols proposed in [6] and sonThus, we write: R; «— PUF(C;). PUFs have essentially
potential weaknesses of the scheme. We end this sectio parts: i) a physical part and ii) an operational part. The
specifying some requirements that we would like the new flophysical part is a physical system that is very difficult to
to comply with, for purposes of enhanced security. Sectighs clone. It inherits its unclonability from uncontrollablegeess
and V describe solutions based on symmetric-key and publi@riations during manufacturing. In the case of PUFs on
key cryptography, respectively. Section V introduces a- pran IC such process variations are typically deep-submicron
tocol, which makes use of PUFs to link the IP block to theariations such as doping variations in transistors. Exasp
hardware platform. We contend that this is the most promisiof PUFs include optical PUFs [10], silicon PUFs [12], cogtin
way of guaranteeing pay-per use licensing models for FPGA8JFs [13] and intrinsic PUFs [4], [14], [15]. The operatibna
We end with some conclusions in Sect. VII. part corresponds to a circuit designed to take care of theenoi
present in PUF responses as well as their non-uniform nature
This is called a helper data algorithm or fuzzy extractor][16

In the following, we will assume familiarity with standard[17]. Efficient implementations of fuzzy extractors havesbe
cryptographic blocks such as symmetric-key primitiveg.(e.studied in [18].
the AES, DES, triple-DES), hash functions (e.g. MD5, SHA- ,

1, SHA-2) and public-key based primitives (RSA, elliptiC- Parties Involved

curves). We will denote the operation of encrypting a valle  Previous works in IP protection for FPGAs [19], [3], [5]
using a symmetric cipher scheme (e.g. AES in CBC mode) ahdve extensively discussed the parties involved in theadiver
key K by SE(K; X) and similarly for asymmetric ciphers asIP protection chain. In this work, we simply make use of
AE(K,pup; X). The corresponding inverse operations (decryprevious terminology. In particular, we consider the foliog
tion) will be written asSE ' (K;Y) and A (K,.;Y), parties: the end user, the FPGA customer, the system ioegra
respectively. For authentication in the public-key seftiwe or designer (SYS), the hardware IP-Provider or core vendor
will write Sig(K,v; X) for the operation of signing data(IPP), the hardware (FPGA) manufacturer (HWM) or vendor,
X with the private keyK,,;, andVer(K,.;Y) for the cor- the CAD software or EDA vendor (EDA), and a Trusted
responding verification operation using the public K€y,,. Third Party (TTP). Notice that Drimer et al. [7] use similar
When we mean the encryption of a single block using tarminology but different abbreviations for the partiedsa
symmetric-key primitive, we will writeAES(K, X), where in the work of [7], the authors assume that the TTP and the
we have essentially assumed use of the de-facto standard,HWVM correspond to the same party, whereas we allow for
AES, as the block cipher of choice. Computing a Messagfgem to be different.

Authentication Code (MAC) or keyed hash function will be

Il. PRELIMINARIES

written M AC(K, X), while verifying it will be denoted by Il THE COREDISTRIBUTION PROBLEM
MACY(K,Y). We will write {S;}!_, to mean the set of IP providers who build specialized circuits (IP cores) and
S;'s wherei =1,2,--- ,t. license them to multiple external parties require thatrthei

internal design remains confidential to guarantee profitabi
Presently, an IP provider charges a one-time large fee and
Public key cryptography was born with the introduction oprovides unlimited use of the encrypted IP block to the syste
Diffie and Hellman’s famous key exchange protocol [9]. Thimtegrator. The disadvantage with this approach is that the
key exchange protocol works as follows: Legbe an element system integrator has to make a large up front payment to be
of a finite groupG of prime orderp, then userA generates able to use the IP block. Alternatively, a pay-per-use model

A. Basic Diffie-Hellman Key Exchange Protocol



Assumptions and Notation:
o |IP provideri has secret key<rp,
o Each EDA vendor (EDA) publishes a certified public ke&fEDApubj and the corresponding private kWEDAp'rivi is embedded in a secure
manner in the corresponding tool.
e The connection SYS-IPP is authenticated.
Secure Flow:
1) Transfer of IP block to EDA tools for processing

EDA Tool j sYs PP
yi = SE(K1p;; 1P;)
zji = AE(KED Apub;; K1p;)
Yis Zij Yis Zij
K]pi = Agil(KEDAprivﬁ ZLJ)
1P, = SE~Y(Kip,;vi)

2) Processl P; block and generate corresponding flow out@t. The netlist might be divided into portiond’; corresponding to the original
I P; block.

3) This whole netlistV or some of its componentd’; are encrypted again witi;p, to producey; = SE(K;p,; N;).

4) EDA vendorj tool encrypts keyK; p, with the public-key of EDA vendok, i.e. zp; = AE(KgpApub,; K1p;)

5) Bothy] and z; are forwarded to the next tool flow.

Fig. 1. Synplicity’s Open IP Protocol [6].

would be highly beneficial to the system integrator but atso B. Synplicity’'s Open IP Encryption Architecture

the IP vendor, by making his IP blocks available to parties th

would otherwise be unable to pay large upfront fees. In the19ure 1 shows the overall scheme where an IP vendor en-
FPGA domain this is presently done in two different ways: (§7YPtS his IP block using a symmetric cryptographic aldont
using proprietary encryption techniques from dif“ferentAEDV\”t,h a secret_ key Krp). This s_ecret key is then e_ncrypteo!
tool vendors and (ii) using encryption at the FPGA devicg>'N9 @ public-key (asymmetric) cryptosystem using public
level. However, proprietary solutions in general, assuh t keys for eac;h EDA tool vendor. These encrypted keys are then
one system integrator has access to IP originating fromegpbedded in the IP code. Therefore, the EDA tools (for which

single source (in addition to the code/IP developed in hpusH'€ !P vendor had encrypted the keys) first decrypts the key

This creates problems for IP integrators who combine IP froffped t(_) encrypt the. IP block. This is pqssible as the _secret
different IP vendors with their own IP using multiple EDAkey pair of the public key cryptosystem is embedded in the

tools. Synplicity (an EDA vendor) has therefore suggested EDA tool. Once the IP veljdor’s key ?S decrypted, the tool can
open IP encryption scheme [6]. This would enable all ED}g\iecrypt the IP block. Notice that this protocol allows the IP
vendors to use a similar technique for IP encryption/detioyp provider to decide ahead of time which tools will have access
in their tools but with different keys. to his IP by encrypt_ing the IP provider’s key with the public
key of each “authorized” EDA tool.

Although in theory the solution is secure, there are several
drawbacks with the proposed solution, which seem evident
to the security practitioner. The following is an explicist!

Before introducing the encrypted design flow proposed m such prob_Iems or potential w_ea_knesses with the proposed
[6], it is necessary to understand what the typical hardwa?gheme' Notice that we_armtclalmlng to break the system.
design flow (without encryption) for FPGA looks like. DuringRather’ we are attempting to pe on the safe S'd.e aqd make
the design process, a system integrator gets third party e that the proposed protocol is more robust against pakten
blocks from IP providers, typically in the form of a RTL,attackers:
and combines them with its own (in house) RTL blocks. « IP vendors have to completely trust the EDA vendors
The design team then uses any one of the different EDA for the protection of their IP since the EDA vendor can
vendor’s synthesis tool to generate a gate-level netlisthis decrypt any key used to decrypt an IP. This problem is
point, the design team might simulate their design and werif  further magnified with the proposed scheme as the IP
that the functionality as well as constraints from the desig  vendor has to trusall the EDA tools used to process

A. The Typical Design Flow

specifications are met. If this is not the case, then thisffoat the IP block (here the same key is encrypted with public
of designing and synthesizing is iterated several timed unt keys of multiple EDA vendors). Therefore, a weakness
constraints and functionality are according to specificati in any single tool of any vendor would be sufficient to

Notice that synthesis and simulation tools might be pravide  compromiseall the IP from all IP vendors.

by different EDA vendors. This (final) netlist is, in turn, « The encrypted IP block could be leaked by a licensee
provided to the FPGA vendor’s place and route tools to making it available to other unlicensed parties, who can
generate a configuration file, which is programmed onto the perform all the above operations on the encrypted IP
FPGA. block and integrate the IP into a different design. The



main reason this is possible is that there is no bindirepftware obfuscation techniques or (for example) whitebox
of the encrypted IP to the licensed system integrator. tmyptography to improved the security of the system. We
other words, anyone with a copy of the software toolsaution that such techniques are still an area of research in
can in principle use the flow and the IP block. its infancy.

« In addition, during the flow if the entire IP output (com-
bination from the different IP cores) has to be encrypted
with only one of the manyK;p, that was used as inputA. Using Secret-Sharing

IP blocks to the tool, then the output of the EDA tool |ntroduced independently by Shamir [20] and Blakley [21]
can be compromised by choosing a knoWnp, With a iy 1979, secret-sharing is a well-known technigue to minéni
bogus IP. the effects of key exposure. The idea is thus very simple. We
follow the original flow but instead of re-encrypting part of
. . ] . the netlist with the key of the IP provider, we first split the
Given the previous discussion, one may ask what would Végiiput of EDA tool; into shares, such that the attacker has to
put forward as requirements of such a system? In this SeCt'%Bmpromise all keys before gettiragy information about the
we briefly summarize these requirements from a securitytpo[gutput of the EDA tool. Thus, this approach also strengthens

of view. In particular, we would like to minimize the impactihe security at the “interface” between EDA tools. The oltera
that a single key disclosure has on the system. In other worgls,y is shown in Figure 2.

if the secret key of an IP provider or the private key of an EDA Ngtice that in Step 6, we could encrypt eafh p, sepa-

tool is leaked to the outside, the effect that this discleuds (ately. We assume that for the encryption of the secret keys
should I_Je m|n|m|zed |n_the Qvgrall system. Moreover, from AR, p, of each IP provider, we have used a semantically secure
IP provider’s point of view, it is Qe5|rable to have tools tthaencryption scheme [22]. Such schemes make use of nonces,
could enforce a pay-per-use business model. _ which we do not show explicitly in the protocols for ease of

_ Inour discussion, we assume implicitly that the environtmepresentation. Also in Fig.2, we have used the simplest form
in which the EDA tools operate is a secure environmegt secret sharing scheme. However, any secret-sharingneche
or, alternatively, that the tools themselves use techisiqoe il work as well at the cost of additional hardware resostce
guarantee that the keys (and their use) present at any oee timrne proposed scheme as specified in the previous section
in memory are protected. We also assume that if the EQ@gyits in ans fold increase in the communication complexity.
tools contain legitimate and authentic secret keys thetole |, other words. if a normal netlist occupies 1 MByte of
are trusted. This is extremely important since if the keys amemory space, in the present scheme we will have to transmit
compromised (in particular thg private key of the EDA tool MBytes. To reduce this complexity, we can apphput-s
vendor), then the overall security of the system falls aplet  ggcret sharing scheme where we only usghares (instead

cannot emphasize enough the importance of this last statemgg s). Then, onlyt shares are required and our memory
Notice that our “software-based” solutions all suffer fréns requirements are reduced accordingly.

drawback. The waythat we find to get around this is to use
the FPGA and link the IP directly to the FPGA. Assumind. Using All-Or-Nothing Transforms

that the private keys of the EDA tools remain safe, we discuss|n [23] Rivest introduces a method intended to make it more
in the next sections techniques to mitigate the exposureeof ifficult to perform exhaustive key searches on symmetric-
other keys used in the system. key ciphers. Improvements to the efficiency of the All-Or-

Observe that in this model, an attacker who writes fa‘ﬁothing Transform (AONT) are known as well [24], which
tools has no chance of success as long as the legitimatguce the overhead from two encryptions to just one (ie. th
secret keys remain out of his reach. Similarly, we assum@NT would then require a few XOR operations together with
that only legitimate tool vendors will be able to get theipn encryption operation). The AONT construction presented
keys certified. This certification can be performed either tby Desai [24] is shown in Algorithm 1. We will denote the
a trusted third party designated by the industry or by thgyplication of Algorithm 1 with input messag¥ as N’ =

vendor itself by simply publishing its public keys on the4oNT (V). Notice that once the AONT has been performed
EDA tool vendor's website, for example. Here it is impligitl

assumed that the vendor's reputation and possibly its braR@orithm 1 The AONT from Desai [24].

will act as the (implicit) certifying agent (i.e. by buying @Require: A messageV split into blocksNy, No, Na, -, I,
tool from market leader AAA, we implicitly say that we g re: t + 1 encrypted blockd;, Ya, - - , Yis1

trust its brand). In this work, the solutions presented mak§. choose a randoni”

use of standard cryptographic techniques only. Howevés, it > for i — 1 to ¢ do

clear that these standard techniques can be combined with N! = N; & AES(K",7)

IV. STRENGTHENING THE OPENIP FLow

C. Requirements and Assumptions

g ) . 4: end for

early, one way to guarantee the overall process to be &ésto require , , , , ,
the EDA tools to run on trusted hardware. This, however, viektis not 5 Niy1 = K'®@ N1 @ Ny @ --- D N;
realistic. We do not explore in this work the possibility @laxing this and  6: return N’ = NL Né7 .. 'Nt/+1
allowing for only part of the computation to occur in trusted hardware.




Assumptions and Notation:
o |IP provideri has secret key<rp,
o Each EDA vendor (EDA) publlshes a certified public keKEDApub and the corresponding private kWEDAprw is embedded in a secure
manner in the corresponding tool.
e The connection SYS-IPP is authenticated.
Secure Flow:
1) Transfer of IP block to EDA tools for processing

EDA Tool j SYS IPP
yi = SE(Krp;; I P;)
zji = AE(Kppapub;; Kip;)
Yis Zij Yis Zij
KIP =AET (KEDAPT’L’L}]7ZLJ)
1P; = SE™ (K1p;;vi)

2) Processl P; block and generate corresponding flow out@t. The netlist might be divided into portiond’; corresponding to the original
I P; block. This, however, is not relevant in the new flow.

3) Assume that there aredifferent IP providers i.ei = 1,2,3,--- ,s. Then, the EDA tool generates— 1 random share®s, R3, R4, - - , Rs.

4) The EDA tool computesN/ = N @ Ro ® R3s P Ry ® -+ ® Rs.

5) The EDA tooI encryptsN’ and each of theR; with each of thes K;p, to obtainy; = SE(K p,; N') andy, = SE(K;p,; R;) for

1=2,3,-
6) EDA vendor toolg encrypts key(s)1 p, with the public-key of EDA vendok, i.e. zx, = AE(KEpapuby; Kipy s Kipy, Ki1py, -+, Krp,)
7) Bothy; fori=1,---,s andz are forward to the next tool flow.

Fig. 2. Strengthened Synplicity’s Open IP Protocol with réeSharing.

on dataN, the outputN’ is subsequently encrypted, resultingC. Discussion
inY = SE(K, N'). The strength of the AONT idea is that an
attacker must decryptll the message blocks; before he can
obtain the entireV or any information on the party; of N.

The solutions so far strengthen the open IP flow by making
it harder for an attacker to extract information from theemt

ediate outputs sent between one tool flow and the next. The
In addition, the message expansion is only one extra eraulyp rst solution does this by using secret-sharing on the dwipu

block (i.e. in the case of AES only 128-bits extra). Howeve
€Gne tool and re- encrypting with the keys originally prowde
this is at the expense of performing two rounds of encryptio
y the IPP. The cost is an increase in the communication

Integrating Algorithm 1 into the open IP flow then is straigh omplexity since now, the EDA tool needs to encrypiitputs
forward. In particular, the following steps are performed: (or a subset of it), ,where is the number of 1P blocks
0r|g|nat|ng from different IP providefs The second solution,
Sased on AONTSs, has similar properties to the first one. It
lEeduces the communication complexity to a fraction of the
output of each EDA tool at the cost of increased computationa
complexity. In other words, instead of performing one round
2) The EDA tool generatesnerandom keyk”. This key of encryption per block of the EDA tool output, we need to
does not need to be shared with anyone. perform tWO. rounds. T
3) ComputeN’ — AONT(N), whereN' is the concate- The previous protocols can be strengthened to minimize
nation of blocksN’ for i = 1,2, -+ ..+ 1. the effect of key leakage between different EDA tools,
4) The EDA tool encryptSr — [(t + 1)/s] blocks by having each EDA tool generate new keys, _caII them
N! with each of thes keys K;p, to obtainy; = {KReTe””ypti}f:l’ and re-encrypt thelr outputs W.'th these
SE(KIP N/ N/ N’ ) for i — keys instead of re-usingKp,}7_,. Notice that in this case,
= DsA D - (i 1)s 42 (i-1)s+s the system needs to take care of encrypting these keys with

1,2,---,s. In other words, we partition thie+ 1 blocks X .
N’ |nto s groups each containing blocks, except public keys approved by the IPP in advafice

pOSS|ny the last group. Each groupeblocks is then Although, the solutions described in this section reduee th

1) Perform Steps 1 and 2 in Fig. 2. At the end of the
steps we have output of EDA togl is N, which can
be divided into blocks (of size specified by the bloc
cipher to be used, i.e. 128-bit blocks if AES is uséd)
fori=1,2,---,t

encrypted with a different key<; p.. effect of key leakage between EDA tools, drawbacks remain.
5) EDA vendor j's tool encrypts key(s)Krp with In particular, if an IP block is leaked (in encrypted form)
the publickey of EDA vendork, ie. z, = to the outside world anyone with a legal set of design tools
Ag K uby, s K 5 K 5 K y T K s
6) All (Y I;?léz;kbkare Ifglrwaigéd té)PtShe next Itgczl flow 2Here we have mede the implicit assumption Fhat IP blocksesponding

to the same IP provider have been encrypted with the sameCkesrly, the
) ) ) proposed system can support different IP blocks encryptéddifferent keys
The overhead of two encryption operations (instead of ondigveloped by the same IP provider. Simply treat each IP biub&pendently

one) seems a reasonable trade-off considering that efmnypf's, being developed by a different provider.

3In the original scheme [6], the IPP encrypts his key with théliz keys
will Only be performed at the beg'nmng and at the end of ea%hthose tools, which he allows to process his code. Notieg tihis is done

tool flow. in advance, thus, essentially providing an implicit licens



(which have knowledge of the private key of the EDA vendoi$ currently work to standardize methods to do this (see,[27]
will be able to use the encrypted block. It appears hard [28] for proposals). The basic method, however, essentiall
completely solve this problem unless you link the IP block tderives the session key by computing several hashes/MACs of
the specific hardware platform, e.g. using PUFs as in [1], [4he Diffie-Hellman session key. To summarize, what Figure 3
[5] or modifying the hardware platform as in [7]. What weshows is how to perform an authenticated key exchange and
can do is reduce the ability of an attacker to use an IP bloskbsequently, use the agreed key to encrypt the IP block.
in multiple EDA tool flows owned by different organizationsimplicitly we make the assumption that the IPP performs this
In the following we explore possible solutions to this peabl key exchange once with the first tool that his IP block will
interact with and at the same time he certifies the public keys
of the tools to which his IP can be forwarded.

In this section, we consider ways in which we can limit Notice that this solution partially solves the problem of a
the distribution of encrypted IP. In particular, notice tthdicensee leaking an IP block and making it available in en-
a dishonest system integrator does not necessarily neeccrigpted form to other (legal) EDA tool licensees. In particu
get access to the IP block kel;p, (corresponding to IP we create a key which is specific to a particular EDA tool
provider i) to be able to integrate this IP into his designinstantiation (by instantiation we mean the particularcpie
In particular, given that thé{;p, has been encrypted withof software that the SYS gets from the EDA tool provider)
the public keyK gp apup; Of EDA tool j, then any tool with using theX DF and assuming that there is a unique identifier
the corresponding private k&Y g p apriv;» Will have access to which cannot be removed or tampered with in the EDA tool.
K;p,. This implies that one system integrator can provide tt&uch unique identifier could be implemented with tamper
encrypted IP block to another system integrator with theesamesistance tokens or a TPM, for example. A protocol would
tools and the second system integrator will be able to use th&ve to run between the tool and the token to guarantee that
IP block, since he has a legal copy of the EDA tgol the unique identifier is indeed the expected value. Assuming

Several possible solutions come to mind. One could try dimat the attacker cannot tamper with the identifier then our
approach in which the IPP uses a differdip, for every protocol guarantees that every EDA Tool instantiation will
SYS. This will clearly not solve the problem because ofhave access to a different key and therefore, leaking the IP
the same reasons described in the previous paragraph. Uditagk in encrypted format would not be of use, since other
a different public-key/private-key pair for each EDA tooltools will not know the agreed key.
provided to each SYS would solve the problem but it would
essentially be an “almost’ symmetric-key cryptosystem. In V!- SECUREINTEGRATION OF MULTIPLE IP-BLOCKS
particular, we loose the advantage of having a single piyblic BASED ON PUFs
available and global public ke zp apus,, Which can be used ~ As mentioned in Sect. llI, during the integration phase, the
by everyone desiring to encrypt a message to the owner of thaious IP blocks undergo different design phases. Fithtdy
corresponding private ke gp priv,- The EDA tool vendor are simulated to ensure they fulfill the required criterine
would have to make available th€xzpa,., to the IPP , in they are integrated into a single design by synthesiziragepl
a secure and authenticated manner, every time that the ER route tools.
desires to provide its IP blocks to a different SYS. In doing In this section, we sketch a solution requiring that the IP
this the EDA vendor would act as an intermediary, whichendors provide a simulation library unencrypted for their
might not be desirable from a security point of view but alst® which allows the integrator to test the IP block with
an economic/strategic point of view. For example, the EDéther IP (and his own design). Such a simulation library is
vendor would know the IPP customer lists, which might nalready commonly distributed during the evaluation phase i
be acceptable to the IPP. Fortunately, standard cryptbgrapthe industry and it does not allow to obtain a synthesizatie ¢
technigues can be used to solve this problem. Figure 3 shdwam it. The real IP that goes onto the FPGA is sent to the
the initial part of the protocol, which is critical for the@eity SYS as an encrypted pre-routed hard macro. Such macros are
of the overall protocol. Once the key used to encrypt theso already in use today (for e.g. Altera’s incremental gem
IP block has been derived, one of the protocols previoudtion). The difference here is that the key for the decypts
described in Sect.IV can be used. Thus, we follow ideas aimiihot available to the tools but only inside the FPGA (and hence
to [7], [8] but this time at the EDA tool level, which has thewould require modification to the configuration controlldr o
advantage of not requiring changes to the hardware platfotne FPGA which will be described later). The macro is thus
(FPGA chip). encrypted using a key derived from the PUF responses during

In Figure 3 the most involved part is the authenticated kalie enroliment phase of the FPGA. For specific protocols,
exchange protocol, which is due to Diffie et al. [25] and it islescribing how to perform the enroliment and how to integyrat
known as the Station-To-Station protocol. Notice that wat juit with symmetric key and public-key primitives in the coxte
chose a well-known and studied protocol but other protocolsf IP protection for FPGAs, we refer to [4], [5], respectivel
which achieve the same exist as well (see e.g. [26]). ObselNetice that the public-key based protocols described irdb]
also that we use a Key Derivation Function, denaféfDF’, not require that any secret information leave the FPGA, whic
which is not defined. This is left on purpose this way as theig an added advantage. It is only required that the public key
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Assumptions and Notation:
« IP provideri has a private-public key paitK7ppriv;; K1Ppub; )-
o Each EDA vendor (EDA) publishes a certified public keKEDApulr and the corresponding private kWEDAp'rivi is embedded in a secure
manner in the corresponding tool. Thus, each IP providess a certified copy of the EDA tool vendor's.
o The EDA vendor has provided IP providewith a signed certificate on his public key Qgnfo; p,) = (|ﬂf0[pi,8ig(KEDAp7-in ;Inforp,)),
where Infa p, = (IDrp,, K1ppub,)
o A Key Derivation Function, denote& DF'.

Secure Key Exchange [25]:

EDA Tool j SYS IPP
Generate randomny
L Ka, =g¥ modp
Generate random
KB], =g® modp
Kij = KDF(Ka,,Kp;,ID1p,,IDgpa;)
YBAji = SS(KZJ i Sig(KEDAp'r‘ivj ; KBj ’ KA1))
KB;,YaBy,
Kij = KDF(Ka,,Kp,;,ID1p,,IDgpa;)
T = Sgil(Kij; YBAji,)
Ve’”(KEDApubj ; T7). If correct continue, otherwise abort
Yap,; = SE(Kij; Sig(Krppriv;; Ka,;, KB;))
YaB,

T" =S (Kij; Ya,;)
Ver(Kippup,; ")
If correct continue, otherwise abort.

IP Block Transmission:

Yi Y; = SE(Kij; IP;)
IP, = SE71(Kij;Ys)

Fig. 3. Public-key Based IP Sharing Shared Key Protocol.

corresponding to the private key derived from the PUF aridr some Xilinx FPGAs but under different circumstances).
stored in the FPGA be certified by a trusted authority, whichhe modified configuration controller (CC) functions in the
could be the FPGA manufacturer. following way:

Once the designer is sure that the IP works in the overall1) The CC first loads the bitfile and programs areas of
design (based on the simulation results), the integratar ca  the FPGA which can be done without any decryption,

position the black box encrypted IP at a particular position leaving out the empty blocks for the decrypted IP.
his FPGA. The interfacing of this block is made possible by 2) The CC then reads the tags to program the empty areas
the exact position of the interface signal pins made avigilayp with the appropriate IP block.

the IP provider. Since the encrypted black boxes are preedou  3) Based on the tag information it then reads the helper data
for a particular FPGA, the final bitfile that is used to program  for the encrypted block and based on the PUF response
the FPGA can set aside these resources on the FPGA. Thus, of the FPGA to derive the necessary key to decrypt the
the bitfile contains tags for which IP block (when decrypted) IP.

goes to which empty position and the required helper data4) The CC then decrypts the IP block and programs the

position in external flash to decrypt the block. The overall  empty positions.
programming file for the FPGA then includes this bitfile, the 5) CC continues to perform (3) and (4) until all encrypted
encrypted IP blocks and their associated helper data. IP blocks are programmed onto the FPGA.

By using the techniques described, we can ensure that therhe keys that are used to encrypt different IP blocks from
IP vendor has an end-to-end security of his IP. The detafiferent IP vendors can be kept different (even though they
of the IP are never decrypted in any EDA tool. In particulagre for the same FPGA). It is imperative that the keys be
decryption only occurs inside the FPGA. The secret key f@lerived from different PUF blocks if traditional technigue
the decryption is also unknown to any other user (includieg t for fuzzy extractors [17], [16] are used. In particular,rthare
system integrator) because it is based on the PUF responggent attacks [29] which allow to derive the original PUF ke
which are specific to the FPGA. based on the availability of different helper data (derifren

As mentioned before the configuration controller on théhe same randomness). The algorithmic circuitry to deitiee t
FPGA also needs to be modified to take care of partialkeys from the PUF and the helper data can be built-in by
programming parts of the FPGA (this is already possibtbe FPGA manufacturers onto the configuration controller. A



single crypto decryption can be used if all IP vendors detide[13] P. Tuyls, G.-J. Schrijen, BSkori¢, J. van Geloven, N. Verhaegh,
choose a standardized algorithm and this can also be intlude and R. Wolters, “Read-Proof Hardware from Protective G’ in

within the configuration controller (which is already being

done for high end FPGAS).

IP protection for FPGA cores have previously considered a
single IP owner model. However in a real FPGA development

(14]

VII. CONCLUSIONS

environment, multiple IP providers are involved whose sor

are part of the final design. Hence EDA tools play a central
role in any IP protection framework. The Synplicity’s Oper6]
IP Protocol is a first step in the direction of creating an open

environment for different tools to inter-operate with eather

while protecting the IP from various vendors. Our contribat [17]
has shown possible weaknesses in the proposed protocol and

suggested modifications that allow robust protection ofNE.
have also presented a solution for IP rationing (i.e. lihé t

use) using PUFs. The proposed solution is extremely impbrtéls]
to guarantee per use royalty for IP when multiple IP from
different vendors needs to be integrated into a single desig
This solution also makes sure that the confidentiality of tqgg
IP is in one single chain rather than having to trust EDA tool

vendors and possible weakness in a parallel chain.

(1]

(2]

(3]

(4]
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